PVD Coatings in Medical Devices Industry – Bio-compatibility

PVD Coatings in Medical Devices Industry – Bio-compatibility

PVD Coatings With Biocompatibility Testings

 

The biocompatibility of a coating is a prerequisite to its use on medical devices.

 

For this reason, we have tested the biocompatibility of all the coatings that it applies, with the exception of TiN, which has been widely reported to be biocompatible.

 

Coatings are certified biocompatible based on a series of tests conducted by an independent biological-testing laboratory. These tests were conducted in accordance with ISO 10993-1 guidelines for materials that experience short-term body contact. The results indicate that TiN, ZrN, CrN, TiAlN, AlTiN are acceptable for external and internal medical devices that contact bone, skin tissue or blood.

 

Biocompatibility tests completed include the following:

1. Sensitization: no significant evidence of causing delayed dermal contact sensitization in a guinea pig.

2. Cytotoxicity: no evidence of causing cell lysis or toxicity.
3. Acute Systemic: no significant systemic toxicity or mortality.
4. Intracutaneous: no evidence of significant irritation or toxicity in rabbits.
5. Genotoxicity: not mutagenic.
6. USP Muscle: non-irritating to muscle tissue.
7. Hemolysis: nonhemolytic, compatible with blood.

 

 

# Coating Film Color Hardness HV Coefficient of Friction Biocompatibility Testing
1 TiN Gold 2300-2500 0.35 Pass
2 CrN Silver 2000-2200 0.35 Pass
3 TiN/TiCN Bronze/Gray 2800-3200 0.3 Pass
4 AlTiN Violet/Black 3000-3400 0.35 Pass
5 TiAlN Copper/Bronze 3000-3200 0.4 Pass
6 ZrN Pale Gold 2300-2500 0.35 Pass
7 DLC (a-C:H) Black 2000-3000 0.1 Pass
8 AlTiCN Black 1200-1800 0.2 Pass
9 AlTiN Black 1200-2000 0.2 Pass

 

 

Note: The data generated from laboratory samples. Coating film properties may vary depending on customer’s material, surface condition ( high polished or others) and products 3D geometry.)

 

Reference:

1. Pappas and Buechel, 41st Annual ORS Meeting, March 1994.

2. Coll et al, Surface Coating Technology, 1988.

 

 

Please contact us to find the suitable PVD coating solutions and PVD coater systems for your products.

Frequently Used Material Melting Point Reference

Frequently Used Material Melting Point Reference

Melting Point Name Symbol #
0.95 K -272.05 °C -458 °F Helium He 2
14.025 K -258.975 °C -434 °F Hydrogen H 1
24.553 K -248.447 °C -415.205 °F Neon Ne 10
50.35 K -222.65 °C -368.77 °F Oxygen O 8
53.48 K -219.52 °C -363.14 °F Fluorine F 9
63.14 K -209.86 °C -345.75 °F Nitrogen N 7
83.81 K -189.19 °C -308.54 °F Argon Ar 18
115.78 K -157.22 °C -251 °F Krypton Kr 36
161.3 K -111.7 °C -169.1 °F Xenon Xe 54
172.16 K -100.84 °C -149.51 °F Chlorine Cl 17
202 K -71 °C -96 °F Radon Rn 86
234.28 K -38.72 °C -37.7 °F Mercury Hg 80
265.9 K -7.1 °C 19.2 °F Bromine Br 35
300 K 27 °C 81 °F Francium Fr 87
301.55 K 28.55 °C 83.39 °F Cesium Cs 55
302.9 K 29.9 °C 85.8 °F Gallium Ga 31
312.64 K 39.64 °C 103.35 °F Rubidium Rb 37
317.3 K 44.3 °C 111.7 °F Phosphorus P 15
336.35 K 63.35 °C 146.03 °F Potassium K 19
371 K 98 °C 208 °F Sodium Na 11
386.7 K 113.5 °C 236.3 °F Iodine I 53
388.36 K 115.36 °C 239.65 °F Sulfur S 16
429.76 K 156.76 °C 314.17 °F Indium In 49
453.7 K 180.7 °C 357.3 °F Lithium Li 3
494 K 221 °C 430 °F Selenium Se 34
505.06 K 232.06 °C 449.71 °F Tin Sn 50
527 K 254 °C 489 °F Polonium Po 84
544.52 K 271.52 °C 520.74 °F Bismuth Bi 83
575 K 302 °C 576 °F Astatine At 85
577 K 304 °C 579 °F Thallium Tl 81
594.18 K 321.18 °C 610.12 °F Cadmium Cd 48
600.6 K 327.6 °C 621.7 °F Lead Pb 82
692.73 K 419.73 °C 787.51 °F Zinc Zn 30
722.65 K 449.65 °C 841.37 °F Tellurium Te 52
903.9 K 630.9 °C 1167.6 °F Antimony Sb 51
913 K 640 °C 1184 °F Plutonium Pu 94
913 K 640 °C 1184 °F Neptunium Np 93
922 K 649 °C 1200 °F Magnesium Mg 12
933.25 K 660.25 °C 1220.45 °F Aluminum Al 13
973 K 700 °C 1292 °F Radium Ra 88
1002 K 729 °C 1344 °F Barium Ba 56
1042 K 769 °C 1416 °F Strontium Sr 38
1071 K 798 °C 1468 °F Cerium Ce 58
1081 K 808 °C 1486 °F Arsenic As 33
1095 K 822 °C 1512 °F Europium Eu 63
1097 K 824 °C 1515 °F Ytterbium Yb 70
1112 K 839 °C 1542 °F Calcium Ca 20
1133 K 860 °C 1580 °F Einsteinium Es 99
1173 K 900 °C 1652 °F Californium Cf 98
1193 K 920 °C 1688 °F Lanthanum La 57
1204 K 931 °C 1708 °F Promethium Pm 61
1204 K 931 °C 1708 °F Praseodymium Pr 59
1210.4 K 937.4 °C 1719.3 °F Germanium Ge 32
1234 K 961 °C 1762 °F Silver Ag 47
1259 K 986 °C 1807 °F Berkelium B K 97
1267 K 994 °C 1821 °F Americium Am 95
1289 K 1016 °C 1861 °F Neodymium Nd 60
1323 K 1050 °C 1922 °F Actinium Ac 89
1337.58 K 1064.58 °C 1948.24 °F Gold Au 79
1340 K 1067 °C 1953 °F Curium Cm 96
1345 K 1072 °C 1962 °F Samarium Sm 62
1357.6 K 1084.6 °C 1984.3 °F Copper Cu 29
1405 K 1132 °C 2070 °F Uranium U 92
1517 K 1244 °C 2271 °F Manganese Mn 25
1551 K 1278 °C 2332 °F Beryllium Be 4
1585 K 1312 °C 2394 °F Gadolinium Gd 64
1630 K 1357 °C 2475 °F Terbium Tb 65
1683 K 1410 °C 2570 °F Silicon Si 14
1685 K 1412 °C 2574 °F Dysprosium Dy 66
1726 K 1453 °C 2647 °F Nickel Ni 28
1743 K 1470 °C 2678 °F Holmium Ho 67
1768 K 1495 °C 2723 °F Cobalt Co 27
1795 K 1522 °C 2772 °F Erbium Er 68
1799 K 1526 °C 2779 °F Yttrium Y 39
1808 K 1535 °C 2795 °F Iron Fe 26
1812 K 1539 °C 2802 °F Scandium Sc 21
1818 K 1545 °C 2813 °F Thulium Tm 69
1825 K 1552 °C 2826 °F Palladium Pd 46
1933 K 1660 °C 3020 °F Titanium Ti 22
1936 K 1663 °C 3025 °F Lutetium Lu 71
2028 K 1755 °C 3191 °F Thorium Th 90
2045 K 1772 °C 3222 °F Platinum Pt 78
2113 K 1600 °C 2912 °F Protactinium Pa 91
2125 K 1852 °C 3366 °F Zirconium Zr 40
2130 K 1857 °C 3375 °F Chromium Cr 24
2175 K 1902 °C 3456 °F Vanadium V 23
2239 K 1966 °C 3571 °F Rhodium Rh 45
2473 K 2200 °C 3992 °F Technetium Tc 43
2500 K 2227 °C 4041 °F Hafnium HF 72
2523 K 2250 °C 4082 °F Ruthenium Ru 44
2573 K 2300 °C 4172 °F Boron B 5
2716 K 2443 °C 4429 °F Iridium Ir 77
2741 K 2468 °C 4474 °F Niobium Nb 41
2890 K 2617 °C 4743 °F Molybdenum Mo 42
3269 K 2996 °C 5425 °F Tantalum Ta 73
3300 K 3027 °C 5481 °F Osmium Os 76
3453 K 3180 °C 5756 °F Rhenium Re 75
3680 K 3407 °C 6165 °F Tungsten W 74
3773 K 3500 °C 6332 °F Carbon C 6

Frequently Used Conversion Chart in PVD Vacuum Coating

Frequently Used Conversion Chart in PVD Vacuum Coating

Conversion Chart

1.  Pressure
Multiply By To Obtain
Atmospheres 101325 Pascals (Pa)
Atmospheres 14.7 Pounds/Sq. In.
Atmospheres 1.01325 Bar
Oz. troy 31.1 Grams
Grams 0.0321 Ounces troy
lbs. avoir. 453.59 Grams
gm/cm3 0.0361 bs./in3
lbs./in3 27.7 gms/cm3
 

2.  Length, Area and Volume

Multiply By To Obtain
Angstrom 10-1 Nanometers
Angstrom 10-10 Meters
Micron 10-4 Centimeters
Micron 10-3 Millimeters
Micron 3.94 x 10-5 Inches
Inches 2.54 Centimeters
Inches 25.4 Millimeters
Centimeters 0.394 Inches
Millimeters 0.0394 Inches
Millimeters 39.4 Thousandths of inch (mil)
Feet 30.448 Centimeters
Meters 39.37 Inches
Square mm 1.55 x 10-3 Square inches
Square in. 645.16 Square mm
Square cm 0.155 Square in.
Cubic cm 0.016 Cubic in.
Cubic in. 16.387 Cubic cm

3.  Mass, Weight and Density

Multiply By To Obtain
Grams 0.03527 Ounces avoirdupois
Grams 2.205 x 10-3 Pounds avoirdupois
Kilograms 2.205 Pounds avoirdupois
Oz. avoir. 28.35 Grams
Oz. troy 31.1 Grams
Grams 0.0321 Ounces troy
lbs. avoir. 453.59 Grams
gm/cm3 0.0361 lbs./in3
lbs./in3 27.7 gms/cm3
  4. Others  
/ Pa m³/s mbar l/s Torr I/s atm cm³/s lusec sccm slm Mol/s
Pa m³/s 1 10 7.5 9.87 7.5×10³ 592 0.592 4.41×10-³
mbar l/s 0.1 1 0.75 0.987 750 59.2 5.92×10-2 4.41×10-5
Torr l/s 0.133 1.33 1 1.32 1000 78.9 78.9×10-2 5.85×10-2
atm cm³/s 0.101 1.01 0.76 1 760 59.8 5.98×10-2 4.45×10-5
lusec 1.33×10-4 1.33×10-³ 10-³ 1.32×10-³ 1 7.89×10-2 7.89×10-5 5.89×10-8
sccm 1.69×10-³ 1.69×10-2 1.27×10-2 1.67×10-2 12.7 1 10-³ 7.45×10-7
slm 1.69 1.69 12.7 16.7 1.27×10-4 1000 1 7.45×10-4
Mol/s 2.27×10³ 2.27×104 1.7×104 2.24×104 1.7×107 1.34×106 1.34×103 1
/ cm inch ft / K F
cm 1 0.394 0.033 K 1 K-273.15 9/5K-459.67
inch 2.54 1 0.083 ℃+273.15 1 9/5℃+32
ft 30.48 12 1 F 5/9(f+459.67 5/9(F-32) 1
   
/ Pa N/㎡ Bar mbar ubsr dyn/c㎡ Torr mm Hg micron u mTorr atm at mm WS Psi lbf/inch2 psf lbf/ft2
Pa 1 1×10-5 1×10-2 10 7.5×10-3 7.5 9.87×10-6 1.02×10-5 0.102 1.45×10-4 2.09×10-2
bar 1×105 1 1×103 1×106 750 7.5×105 0.987 1.02 1.02×104 14.5 209×103
mbar 100 1×10-3 1 1000 0.75 750 9.87×10-4 1.02×10-3 10.2 1.45×10-2 2.09
ubar 0.1 1×10-6 1×10-3 1 7.5×10-4 0.75 9.87×10-7 1.02×10-6 1.02×10-2 1.45×10-5 2.09×10-3
Torr 1.33×102 1.33×10-3 1.33 1333 1 1000 1.32×10-3 1.36×10-3 13.6 1.93×10-2 2.78
micon 0.133 1.33×10-6 1.33×10-3 1.33 1×10-3 1 1.32×10-6 1.36×10-6 1.36×10-2 1.93×10-5 2.78×10-3
atm 1.01×105 1.013 1013 101×106 760 7.6×105 1 1.03 1.03×104 14.7 2.12×103
at 9.81×104 0.981 981 9.81×105 735.6 7.36×105 0.968 1 1×104 14.2 2.04×103
mm WS 9.81 9.81×10-5 9.81×10-2 98.1 7.36×10-2 73.6 9.68×10-5 1×10-4 1 1.42×10-3 0.204
psi 6.89×103 6.89×10-2 68.9 6.89×104 51.71 5.17×104 6.8×10-2 7.02×10-2 702 1 144
psf 47.8 4.78×10-4 0.478 478 0.359 359 4.72×10-4 4.87×10-4 4.87 6.94×10-3 1
   
Temperature
K
100 212
80 176
60 140
40 104
20 68
0 32
-20 -4
-40 -40

Frequently Used Material Density Reference Table

Frequently Used Material Density Reference Table

An easy to use reference guide that enables you to answer the question what is the density of commonly used elements such as hydrogen, oxygen, aluminum or gold including their name, symbol and atomic number. Densities provided are in g/L or grams per liter that shows how many grams of a certain substance are present in one liter of a usually liquid or gaseous mixture – and g/cc for grams per cubic centimeter of elements that usually occur as solids.
Density Name Symbol #
0.0899 g/L Hydrogen H 1
0.1785 g/L Helium He 2
0.9 g/L Neon Ne 10
1.2506 g/L Nitrogen N 7
1.429 g/L Oxygen O 8
1.696 g/L Fluorine F 9
1.7824 g/L Argon Ar 18
3.214 g/L Chlorine Cl 17
3.75 g/L Krypton Kr 36
5.9 g/L Xenon Xe 54
9.73 g/L Radon Rn 86
0.534 g/cc Lithium Li 3
0.862 g/cc Potassium K 19
0.971 g/cc Sodium Na 11
1.55 g/cc Calcium Ca 20
1.63 g/cc Rubidium Rb 37
1.738 g/cc Magnesium Mg 12
1.82 g/cc Phosphorus P 15
1.848 g/cc Beryllium Be 4
1.873 g/cc Cesium Cs 55
2.07 g/cc Sulfur S 16
2.26 g/cc Carbon C 6
2.33 g/cc Silicon Si 14
2.34 g/cc Boron B 5
2.54 g/cc Strontium Sr 38
2.702 g/cc Aluminum Al 13
2.99 g/cc Scandium Sc 21
3.119 g/cc Bromine Br 35
3.59 g/cc Barium Ba 56
4.47 g/cc Yttrium Y 39
4.54 g/cc Titanium Ti 22
4.79 g/cc Selenium Se 34
4.93 g/cc Iodine I 53
5.24 g/cc Europium Eu 63
5.323 g/cc Germanium Ge 32
5.5 g/cc Radium Ra 88
5.72 g/cc Arsenic As 33
5.907 g/cc Gallium Ga 31
6.11 g/cc Vanadium V 23
6.15 g/cc Lanthanum La 57
6.24 g/cc Tellurium Te 52
6.51 g/cc Zirconium Zr 40
6.684 g/cc Antimony Sb 51
6.77 g/cc Praseodymium Pr 59
6.77 g/cc Cerium Ce 58
6.9 g/cc Ytterbium Yb 70
7.01 g/cc Neodymium Nd 60
7.13 g/cc Zinc Zn 30
7.19 g/cc Chromium Cr 24
7.3 g/cc Promethium Pm 61
7.31 g/cc Indium In 49
7.31 g/cc Tin Sn 50
7.43 g/cc Manganese Mn 25
7.52 g/cc Samarium Sm 62
7.874 g/cc Iron Fe 26
7.895 g/cc Gadolinium Gd 64
8.23 g/cc Terbium Tb 65
8.55 g/cc Dysprosium Dy 66
8.57 g/cc Niobium Nb 41
8.65 g/cc Cadmium Cd 48
8.8 g/cc Holmium Ho 67
8.9 g/cc Cobalt Co 27
8.9 g/cc Nickel Ni 28
8.96 g/cc Copper Cu 29
9.07 g/cc Erbium Er 68
9.3 g/cc Polonium Po 84
9.32 g/cc Thulium Tm 69
9.75 g/cc Bismuth Bi 83
9.84 g/cc Lutetium Lu 71
10.07 g/cc Actinium Ac 89
10.22 g/cc Molybdenum Mo 42
10.5 g/cc Silver Ag 47
11.35 g/cc Lead Pb 82
11.5 g/cc Technetium Tc 43
11.724 g/cc Thorium Th 90
11.85 g/cc Thallium Tl 81
12.02 g/cc Palladium Pd 46
12.37 g/cc Ruthenium Ru 44
12.41 g/cc Rhodium Rh 45
13.31 g/cc Hafnium Hf 72
13.5 g/cc Curium Cm 96
13.546 g/cc Mercury Hg 80
13.67 g/cc Americium Am 95
14.78 g/cc Berkelium Bk 97
15.1 g/cc Californium Cf 98
15.4 g/cc Protactinium Pa 91
16.65 g/cc Tantalum Ta 73
18.95 g/cc Uranium U 92
19.32 g/cc Gold Au 79
19.35 g/cc Tungsten W 74
19.84 g/cc Plutonium Pu 94
20.2 g/cc Neptunium Np 93
21.04 g/cc Rhenium Re 75
21.45 g/cc Platinum Pt 78
22.4 g/cc Iridium Ir 77
22.6 g/cc Osmium Os 76

About Vacuum Arc Plating , Arc Evaporation Coating

About Vacuum Arc Plating , Arc Evaporation Coating

About Ion Plating

General Information

 

1. Ion plating utilizes concurrent or periodic energetic particle bombardment of the depositing film to modify and control the composition and properties of the depositing film.

2. The depositing material may be vaporized either by evaporation, sputtering, arc vaporization, or other vaporization source.

3. The energetic particles used for bombardment are usually ions of an inert or reactive gas, or ions of the depositing material ( film ions).

4. Ion plating can be done in a plasma environment where ions for bombardment are extracted from the plasma

 

Advantages of Ion Plating

 

1. Significant energy is introduced into the surface of the depositing film by the energetic particle bombardment.

2. Surface coverage can be improved over vacuum evaporation and sputter deposition due to gas scattering and “ sputtering re-deposition” effects.

3. Controlled bombardment can be used to modify film properties such as adhesion, density, residual film stress, optical properties.

4. Film properties are less dependent on the “angle-of-incidence” of the flux of depositing material than with sputter deposition and vacuum evaporation due to gas scattering, “sputtering/re-deposition” , and “atomic peening” effects.

5. Bombardment can be used to improve the chemical composition of the film material by “ bombardment-enhanced chemical reactions” and sputtering of un-reacted species from the growing surface.

6. In some applications the plasma can be used to “ activate” reactive species and create new chemical species that are more readily absorbed so as to aid in the reactive deposition process ( reactive ion plating )

 

Disadvantages of Ion Plating

 

1. There are many processing variables to control.

2. It is often difficult to obtain uniform ion bombardment over the substrate surface, leading to film-property variations over the surface.

3. Substrate heating can be excessive.

4. Under some conditions the bombarding gas may be incorporated into the growing film.

5. Under some conditions excessive residual compressive film stress may be generated by the bombardment.

6. Ion plating is used to deposit hard coatings of compound materials, adherent metal coatings, optical coatings with high densities, and conformal coatings on complex surfaces.

7. Droplets which might affects the coating surface.

 

First Multi Arc Vacuum Coating Machine Installed In Ukraine

First Multi Arc Vacuum Coating Machine Installed In Ukraine

Our first PVD vacuum coating machine was successfully assembled in Ukraine. Read the feedback from our customer:

 

 

English:

 

April. 2018 

 

I bought the PVD-machine RTAC-1416. After the start-up and commissioning of the equipment, ceramics, glass and stainless steel were coated. The quality of the coating is excellent.
To cover Al-Zn alloys products, additional surface preparation of the parts to be coated is necessary. The best option is to pre-coat parts with nickel, and then topcoat the decorative coating. But since there are problems with galvanizing and nickel plating, you can do without it. The seller of this equipment can provide the technology of coating without the use of electroplating.
The colors are varied and very beautiful, especially on glass and ceramics. It makes no sense to spend money on expensive targets of chromium, instead of them you can use titanium targets, which are five times cheaper, and the resulting color is practically the same.
The company also provides services for the launch of equipment. At start-up, an interpreter is needed. We used the services of an interpreter who did not have a sufficient level of technical language knowledge. But, in principle, everything was clear, due to the very accessible and user-friendly interface of the software, and a convenient touch screen.
When buying a PVD-machine you need to have a compressor and a chiller. We were recommended to have a compressor at 9-10 atm., but quite enough 5-6 atm. Also the company provides the necessary spare parts.
Before buying a PVD-machine, all negotiations were conducted on the Internet. The end result: the PVD-machine stands and works at my place.
I want to express special gratitude to the highly skilled manager of the company Miss Zhou Xin, who helped bring the matter to its logical completion.

 

TSykalo Sergey Alekseevich (Zaporozhye, Ukraine)

 

Russian:

 

Мною была куплена вакуумная установка для нанесения покрытий RTAС1416. После запуска и введения в эксплуатацию оборудования покрывали керамику, стекло и нержавейку. Качество покрытия превосходное.

Для покрытия изделий из цинковых и алюминиевых сплавов необходима дополнительная подготовка поверхности покрываемых деталей. Самый лучший вариант, это предварительно покрывать детали никелем, а потом поверх наносить декоративное покрытие. Но т.к. существуют проблемы с гальванизацией и никелированием, можно обойтись и без него. Продавец данного оборудования может предоставить технологию нанесения покрытия без использования гальваники.

Цвета получаются разнообразные и очень красивые, особенно на стекле и керамике. Нет смысла тратиться на дорогие мишени из хрома, вместо них можно использовать титановые мишени, которые в пять раз дешевле, а получаемый цвет практически не отличается.

Также компания предоставляет услуги по запуску оборудования. При запуске необходим переводчик. Мы пользовались услугами переводчика, у которого не было достаточного уровня знания технического языка. Но, в принципе, было все понятно, за счет очень доступного и удобного интерфейса программного обеспечения, и удобного сенсорного экрана.

При покупке машины необходимо иметь компрессор и чиллер. Нам рекомендовали иметь компрессор на 9-10 атм., но вполне достаточно 5-6 атм. Также компанией предоставляются в комплекте необходимые запасные части.

Перед закупкой машины все переговоры велись по интернету. Конечный результат: машина стоит у нас и работает.

Хочу выразить особую благодарность высококвалифицированному менеджеру компании мисс Чжоу Синь (Zhou Xin), которая помогла довести дело до логического завершения.

 

Цыкало Сергей Алексеевич (г. Запорожье, Украина)

 

 

 

Ukrainian:

 

Мною була куплена вакуумна установка для нанесення покриттів RTAС1416. Після запуску і введення в експлуатацію обладнання покривали кераміку, скло і нержавійку. Якість покриття дуже чудова.
Для покриття виробів з цинкових і алюмінієвих сплавів необхідна додаткова підготовка поверхні деталей. Найкращий варіант, це попередньо покривати деталі нікелем, а потім поверх наносити декоративне покриття. Але тому що існують проблеми з гальванізацією і нікелюванням, можна обійтися і без нього. Продавець даного обладнання може надати технологію нанесення покриття без використання гальваніки.
Кольори виходять різноманітні і дуже красиві, особливо на склі та кераміці. Немає сенсу витрачатися на дорогі мішені з хрому, замість них можна використовувати титанові мішені, які в п’ять разів дешевше, а одержуваний колір практично не відрізняється.
Також компанія надає послуги із запуску обладнання. При запуску необхідний перекладач. Ми користувалися послугами перекладача, у якого не було достатнього рівня знання технічної мови. Але, в принципі, було все зрозуміло, за рахунок дуже доступного і зручного інтерфейсу програмного забезпечення, і зручного сенсорного екрану.
При покупці обладнання необхідно мати компресор і чиллер. Нам рекомендували мати компресор на 9-10 атм., але цілком достатньо 5-6 атм. Також компанією надаються в комплекті необхідні запасні частини.
Перед закупівлею обладнання усі переговори велися по інтернету. Кінцевий результат: машина стоїть у нас і працює.
Хочу висловити особливу подяку висококваліфікованому менеджеру компанії міс Чжоу Синь (Zhou Xin), яка допомогла довести справу до логічного завершення.
Цикало Сергій Олексійович (м. Запоріжжя, Україна)

PVD Vacuum Metalizer for Forensic Application

PVD Vacuum Metalizer for Forensic Application

On the first day of Feb. 2018, Royal Technoloy welcomed the customer to have an inspection of the Vacuum Metallizing Coater which is applied in Forensic Industry. After weeks of testing on various materials: PET, PC film, Paper, steel, alloy, glass,ceramic, ticket, fabric etc. The customer is so excited to see a successful result. All finger print marks are presented so clearly!!! It is a disruptive innovation for forensic industry.

Applications of PVD Vacuum Coating Technology

Applications of PVD Vacuum Coating Technology

Applications of Vacuum Coating ————by Donald M. Mattox, SVC Technical Director   Introduction Vacuum is an environment where the gas pressure is less than the ambient. A plasma is a gaseous environment in which there are enough ions and electrons for there to be appreciable electrical conductivity. Vacuum coating is the deposition of a film or a coating in a vacuum (or low-pressure plasma) environment. Generally the term is applied to processes that deposit atoms (or molecules) one at a time such as physical vapor deposition (PVD) or low-pressure chemical vapor deposition (LP-CVD) processes or plasma-enhanced CVD (PECVD). In PVD processes, the material being deposited comes from the vaporization of a solid or liquid surface. In CVD processes, the material being deposited comes from a chemical vapor precursor species that is decomposed by reduction or thermal decomposition—mostly on a hot surface. In some cases the material being deposited reacts with the gaseous environment or a codeposited species to form a film of a compound material such as an oxide, a nitride, carbide, or a carbonitride. In CVD processing, the use of a plasma to fragment the chemical vapor precursor in the vapor phase allows the decomposition or reduction processes to proceed at lower temperatures than with thermal activation alone. PECVD can be performed at pressures as low as those used in PVD processing (low-pressure PECVD, LP-PECVD), where the precursor vapor is decomposed mainly in the plasma. In some cases a hybrid deposition process of PVD and LP-PECVD is used to deposit alloys, composites, or compounds. An example is metal carbonitrides where the carbon comes from a chemical vapor precursor such as acetylene; the nitrogen comes from a gas; and the metal from evaporation, sputtering, or arc vaporization of a solid or liquid surface.   Electrically Conductive Films Metal films are the most common electrical conductor films. Metal films may be used as “blanket” metallizations or can be formed into discrete conductor lines (“stripes”) by masking the substrate during deposition or by subsequent photolithographic etching processes. Conductor lines are used in hybrid microcircuit technology and in the manufacture of semiconductor devices. Often, the electrical conductors are multilayer films (stacks) where each layer has a function. For example, the conductor film stack might have the composition: glass-Ti-Pd-Cu-Au. The titanium (Ti) is the “glue” layer, the palladium (Pd) provides corrosion resistance, the copper (Cu) is an electrical conductor, and the gold (Au) provides corrosion protection. Deposited metal conductors in “vias” are used in establishing electrical contacts between different layers in semiconductor device manufacturing. Blanket metallization is used to provide electromagnetic interference (EMI) and radio frequency interference (RFI) shielding on structures such as the plastic cases for cellular phones, electrodes for rigid and flexible capacitor electrodes, and surfaces for radar “chaff.” Metal nitride, carbide, and silicide films generally are electrically conductive (Si3N4 and AlN are important exceptions). In some applications, films of these refractory materials are used to provide diffusion barriers between materials. For example, in semiconductor metallization, aluminum or gold electrode material will diffuse into the silicon during high-temperature processing. An electrically conductive titanium nitride film deposited on the silicon surface before the metal electrode is deposited will prevent the diffusion. Generating stable, electrically conductive, nonrectifying, metal semiconductor contacts of metals or metal-silicide compounds is an important aspect of semiconductor device fabrication. Metal nitrides such as tantalum nitride (TaN) are used as thin film resistor materials. Nontransparent electrically conductive oxides such as chromium trioxide (Cr2O3), lead oxide (PbO), and ruthenium oxygen (RuO) are used as electrodes in high-temperature oxidizing atmospheres. Superconductors are materials that have close to zero electrical resistivity below some critical temperature (Tc). Low- Tc (less than [<] 10 Kelvin [K]) superconductors are often metals. A typical high- Tc (greater than [>] 50 K) superconductor material is a mixture of oxides (yttrium-bismuth-copper [Y-Bi-Cu] oxides, YBCO). High- Tc superconductor thin films are often deposited by laser ablation in vacuum.   Transparent Electrical Conductors Transparent conductive oxide (TCO) films, such as indium trioxide (In2O3), tin dioxide (SnO2), zinc oxide (ZnO) and an alloy of indium oxide and tin oxide (ITO), have numerous applications such as heaters on windows for defrosting, antistatic coatings on display screens, electrodes on flat panel displays and electrochromic devices, and electrodes on both flexible (resistive screen) and rigid (capacitive screen) touch screens. Electrical resistivity for the TCO films can vary from greater than 1,000 ohms per “square” to less than 10 ohms per square with good optical transmission.   Electrical Insulators Electrically insulating films are used to electrically isolate conducting components in semiconductor devices, and as a dielectric within capacitors. Common insulator film materials are silicon dioxide (SiO2), aluminum trioxide (Al2O3), tantalum pentoxide (Ta2O5), silicon nitride (Si3N4), and aluminum nitride (AlN). Interposing a thin oxide film between a metal film and a semiconductor allows the formation of the technologically important metal-oxide-semiconductor (MOS) device. Thick coatings of SiO2, with its low coefficient of thermal expansion, can be rf sputter deposited. Insulating layers of SiO2, silicon nitride (Si2N3), and glass are deposited by PECVD for encapsulation and insulation layers in semiconductor processing.   Optical Films Optical films, usually multilayer films (“stacks”), are films that affect the optical transmission or reflection of a surface. They are generally alternating layers of materials having high (germanium [Ge], Si, TiO2, zirconium dioxide [ZrO2], SiO, cerium dioxide [CeO2]) and low (magnesium fluoride [MgF2], SiO2) indices of refraction. A major application is the antireflection (AR) coatings on lenses. Optical film stacks can be used as optical filters. Neutral density or gray filters reduce the light intensity equally for all wavelengths; broadband filters affect the transmission of radiation over a wide wavelength range, while narrow or monochromatic filters affect transmission over a very narrow wavelength region. An example of a broadband filter is an “edge filter” that “cuts off” the ultraviolet (UV) emitted by a mercury vapor lamp. Examples of narrow-band filters are the color filters used in photography and in projectors. Some film stacks are a special type of optical film that has a color that is related to the angle-of-observation (OVIDs). These films allow holographic-like imaging. These OVID films are used as security devices to prevent counterfeiting. These films are an outgrowth of the interference-colored films used for decorative films and, when pulverized, as pigments.   Thermal Control Coatings The composition of the thermal control coatings on windows differs with the end result desired. If the object is to keep solar radiation from entering through the window, a multilayer film of glass-TiO2-Cr-TiO2 may be used (solar control coating). If the object is to keep heat in the room, a thin film of silver can be used to reflect 85% to 95% of the low-temperature infrared radiation back into the room (low-E coating). One such “double-E coating” is glass-ZnO-Ag-(Ti)-ZnO-Ag-(Ti)-ZnO-TiO2. The ZnO provides an antireflective coating. Other types of thermal control coatings are used to absorb solar radiation (solar absorbers), selectively adsorb solar radiation and not emit infrared radiation (selective solar absorbers), or to have a high emissivity to enhance cooling by radiation. Thermal barrier coatings are used to reduce the thermal transport from a hot environment to the substrate. Zirconium oxide (ZrO2) stabilized with calcium oxide (CaO), MgO, or Y2O3 is used as a thermal barrier coating on aircraft engine turbine blades.   Reflector Coatings Metal films are widely used for reflector surfaces. Silver is often used when corrosion is not a problem, such as for back-surface mirrors. Aluminum can be used either as a front-surface or back-surface reflector. Often, aluminized front-surface reflectors, such as headlight reflectors, are over coated with a protective polymer film (top coat). Chromium is used on front-surface reflectors when corrosion is a problem even though its reflectivity in the visible (60%) is less than that of aluminum (> 90%). Reflector films are used in numerous commonly encountered applications, such as on compact discs for video and music storage, lamp reflectors, and visual mirrors such as the rear-view mirrors for cars. In some cases multilayer films, similar to multilayer optical films, are used to selectively reflect certain wavelengths and not others. Examples are “cold mirrors” that reflect the visible radiation but not the infrared wavelengths and “heat mirrors” that reflect the infrared but not the visible. Heat mirrors are used to raise the internal temperature of halogen lamps. Cold mirrors are used to reduce the heat of stage lighting on actors.   Packaging Barrier coatings are used on flexible polymer films and paper for food packaging to reduce the water vapor transmission rate (WVTR) and the oxygen transmission rate (OTR) through the paper or polymer film. The most common barrier coating material is aluminum, which is deposited on rolls of polymer film (web), then supplied to “converters” who fabricate the packaging. In some cases the metal coatings are deposited on a surface and then “transferred” to the packaging film. Transparent barrier coatings are desirable in many instances. Layers of SiO2-x, by reactive evaporation and PECVD and composite coatings of SiO2:30% Al2O3 by E-beam co-evaporation are used to form transparent barrier layers. The composite coating material is more dense and flexible than the SiO2 or Al2O3deposited material alone. Aluminum films are used on polymer helium-filled balloons to reduce the loss of helium.   Decorative and Decorative/Wear Coatings Metallization for strictly decorative purposes is a large market. Applications vary from coating polymer webs—which are then converted to decorative uses such as balloons and labels—to metallization of three-dimensional articles, such as sports trophies, zinc die cast and molded polymer decorative fixtures, and cosmetic containers. Often these coatings consist of a reflective aluminum coating that is deposited on a smooth base coat, then over coated with a dyed lacquer to give the coating the desired color and texture and also corrosion and wear resistance. In some applications, in addition to the decorative aspects of the coating, the coating is required to withstand wear. For example, titanium nitride (TiN) is gold colored, and titanium carbonitride (TiCxNy) can vary in color from gold to purple to black depending on the composition. Zirconium nitride (ZrN) has the color of brass and is much more wear and scratch resistant than brass. Decorative/wear coatings are used on door hardware, plumbing fixtures, fashion items, marine hardware, and other such applications.   Hard and Wear-Resistant Coatings Hard coatings are often called metallurgical coatings and are a type of tribological coating. The hard coatings are used to increase the cutting efficiency and operational life of cutting tools and to maintain the dimensional tolerances of components used in applications where wear can occur, such as injection molds. In addition, the coatings can act as a diffusion barrier where high temperatures are generated by motion between surfaces or corrosion protection in aggressive environments. There are various classes of hard coating materials. They include: ionically bonded metal oxides (Al2O3, ZrO2, and TiO2), covalently bonded materials (SiC, boron carbon [B4C], diamond, diamond-like-carbon [DLC], TiC, AlN, CrC, mixed carbide, nitride and carbonitride compound alloys, and cubic boron nitride), and some metal alloys (cobalt chromium aluminum yttrium [CoCrAlY], NiAl, NiCrBSi). In some cases the coatings may be layered to combine properties. Hard coatings also are used to minimize fatigue-wear, such as is found in ball bearings. Wear-resistant coatings also may be applied to surfaces where there is a light or periodic load. For example, hard coatings are deposited on plastics to improve scratch resistance. Applications are on molded plastic lenses and plastic airplane canopies. In some cases wear coatings, such as SiO2 or Al2O3, may be applied to already hard surfaces, such as glass, to increase the scratch resistance.   Electrically Active Films Doped silicon films are used in semiconductor devices, and these films often are deposited by a very sophisticated PVD evaporation technique called molecular beam epitaxy (MBE) or a CVD technique of vapor phase epitaxy (VPE). Amorphous silicon for solar cells is deposited by PECVD on webs and rigid substrates. Electochromic films, which change optical transmission on the application of a voltage, depend on the diffusion of a mobile species in the film under an electrical field. Films of a material such as selenium can become electrically charged when exposed to light. Such films are used to hold the toner in photocopying machines. Magnetic Storage Media Magnetic materials are classified as “hard” or “soft” depending on how hard it is to magnetize, demagnetize, or “switch” the magnetic field. Soft magnetic materials, such as the Permalloys (iron [Fe]:40 to 80% Ni) and Y2Fe5O12 (garnet) are used in memory storage devices where the data are changed often. Hard magnetic materials such as Fe3O4, Co:Ni:tungsten [W], Co:rhenium [Re], gadolinium [Gd]:Co, and Gd:terbium [Tb]:Fe are used in more permanent recording media such as audio tapes. Various techniques are used to define the magnetic domains that act as the storage sites.   Corrosion Protective Coatings Protection from an aggressive chemical environment can be accomplished in several ways. The surface can be coated with an inert material or with a material that forms a protective surface after reacting with the environment or with a material that will be sacrificially removed to protect the underlying material. Tantalum, platinum, and carbon are inert in many chemical environments. For example, carbon coatings are used on metals that are implanted in the human body to provide compatibility. In the aerospace industry parts are aluminum coated by the PVD process of ion vapor deposition (IVD) so as to prevent galvanic corrosion of dissimilar materials in contact. Chromium, aluminum, silicon, and the MCrAlY (where M is Ni, Co, Fe) alloys will react with oxygen to form a coherent protective oxide layer on the surface. If the metal ions (Fe, Cu) diffuse more rapidly than the oxygen through the oxide, a thick oxide will form on the surface. If the oxygen diffuses more rapidly through the oxide than the metal ions (Al, Si, Ti, Zr—the “valve” metals), oxidation will occur at the interface and a thin oxide will be formed. The MCrAlY alloy coatings are used as protective coatings on aircraft engine turbine blades. Cadmium, aluminum, and Al:Zn alloys are used as galvanic sacrificial coatings on steel. Vacuum cadmium (“vac cad”) plating has the advantage over electroplated cadmium in that there is no possibility of hydrogen embrittlement of high-strength steel when vacuum deposition processing is used.   Solid Film Lubricants/Low Friction Coatings NASA pioneered the use of vacuum-deposited thin film solid lubricants. The lubricants are of two types: the low-shear metal lubricants—such as silver and lead—and the laminar-shearing compound materials—such as molybdenum disulfide (MoS2). The low-shear metal lubricants are used in high-torque applications such as the rotating anodes in X-ray tubes. Low-shear compound materials are used in mechanical-bearing applications in vacuum and where lubricant “creep” can be a problem. Because only a very thin film is needed for lubrication, the application of the lubricant film does not result in significant changes of dimensions. Low friction coatings of metal-containing carbon (Me-C) are used to reduce wear in mechanical contact applications   Freestanding Structures Freestanding structures can be made by depositing a coating on a surface (mandrel), then separating the coating from the mandrel surface or dissolving the mandrel. The technique is useful for fabricating very thin structures, complex surfaces, or foils or sheets of materials that are hard to deform by rolling. Examples are beryllium windows used for X-ray transmission, boron thin-wall cones for high-frequency audio speakers, and Ti-V-Al metal alloy foils. A relatively new application is the production of microelectromechanical systems (MEMS) devices where very small structures are fabricated using deposition and etching processes.   Base Coats for Electroplating Materials that are difficult to electroplate because of rapid oxide formation can have an adherent base coat applied by PVD processes and then the coating built-up by electrodeposition. Examples are plating on titanium, uranium, and zirconium where a base coat of a material like nickel or copper is applied by a PVD process before the electroplated coating is built up.   Polymer Films There is increasing interest in depositing organic and inorganic polymer films in vacuum. These films can be formed by condensation of a monomer followed by E-beam or UV curing to polymerize the monomer or by plasma polymerization of the monomer. The monomer precursor can yield a carbon, silicon, or boron-based polymer material often containing hydrogen, chlorine, or fluorine. Fluorine-containing films are used to form hydrophobic surfaces.